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We investigate transitions between ensembles of unitary random matrices modeling changes
of statistical properties of quantum chaotic systems which are periodically time dependent. The
transitions simulating change of integrability are modeled with the help of numerically generated one-
parameter families of ensembles interpolating between an ensemble of diagonal unitary matrices and
a circular unitary or circular orthogonal ensemble. In an analogous manner we describe transitions
between circular crthogonal and unitary ensembles corresponding to the time-reversal symmetry-
breaking perturbation of a chaotic system. In all cases we present results concerning statistics of

the quasienergy levels and eigenvectors.

PACS number(s): 05.45.+b, 03.65.—w

I. INTRODUCTION

In the previous paper [1] we presented a simple method
of generating matrices representative for circular random
matrix ensembles of Dyson, i.e., circular unitary ensem-
ble (CUE) and circular orthogonal ensemble (COE) [2,3].
Since matrix elements of unitary matrices are correlated,
construction of random unitary matrices is more compli-
cated than construction of Hermitian matrices typical to
Gaussian ensembles. Statistical properties and correla-
tions between matrix elements of COE and CUE matrices
where analyzed by Pereyra and Mello [4].

Numerous investigations showed that various spec-
tral properties of propagators of time periodic, quantum
chaotic systems [5], or scattering systems [6,7] are well
described in terms of matrices belonging to these statis-
tical ensembles if the corresponding classical systems are
fully chaotic, i.e., the dominant part of the phase space
is covered by chaotic trajectories. A typical classical dy-
namical system is neither fully chaotic nor integrable [8].
It is thus guessed that statistical properties of the spec-
tra of such systems should interpolate between those for
integrable and chaotic systems. The relevant hypothesis
was proposed by Berry and Robnik in the case of au-
tonomous systems [9]. In their approach, the spectrum
mixes properties of integrable and chaotic systems in pro-
portion dependent of the relative volumes of the classical
phase space covered by regular and chaotic motions. In
the case of a system that depends parametrically on the
perturbation parameter, it is interesting to connect the
properties of the spectra to the strength of perturbation,
which causes nonintegrability [10].

It is easy to imagine yet another situation in which
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statistical properties of the spectrum do not conform to
the description in terms of one of the above mentioned
ensembles. Let us imagine that the time-reversal sym-
metry of the system in consideration is weakly broken by
some perturbation controlled by the parameter A [11].
Changing the magnitude of the parameter, we observe a
gradual change of the degree of repulsion between neigh-
boring levels (as well as other statistical properties of the
spectrum). As in the case of a transition from an inte-
grable to a chaotic system, the dependence of the proper-
ties of the spectrum on the strength of the perturbation
is of main interest here.

Numerical investigations of the various transitions be-
tween universality classes of level repulsion were per-
formed for different genuine dynamical systems. The in-
vestigations concentrated predominantly on time depen-
dent, periodic systems (kicked rotator [12]), for which the
description in terms of the circular ensembles of unitary
matrices is appropriate. In an analogous study performed
for the model of periodically kicked top [13], it was shown
that the transition can differ in some respects from the
one taking place in the similar situation but in the Gaus-
sian ensembles corresponding to autonomous systems.

The universality of results for autonomous systems can
be checked by investigation of analogous transitions using
numerically generated random Hermitian matrices in lieu
of a genuine Hamiltonian. In the present paper, we pro-
pose the similar procedure for investigating transitions in
the circular ensembles by generating appropriate random
matrices. In contrast to the earlier discussed ensembles
interpolating between circular ensembles of random ma-
trices [14,15], our scheme provides an explicit algorithm
allowing one to study numerically the transitions between
ensembles of unitary random matrices.
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II. INTERPOLATING ENSEMBLES
FOR TRANSITIONS BETWEEN INTEGRABLE
AND NONINTEGRABLE SYSTEMS

A. Dyson circular ensembles

In order to investigate properties of transitions be-
tween integrable and nonintegrable systems, we must give
a random matrix model of an integrable time-periodic
system. It is known that spectral properties of eigen-
phases of such a system are well described by a set of
random unimodular numbers, phases of which are uni-
formly distributed on the circle. It suggests that an ap-
propriate ensemble should consist of N x N diagonal ma-
trices with diagonal elements equal to exp(i¢;), where
¢iyi = 1,..., N, are independent real random variables
uniformly distributed from 0 to 27. Let us define

D= diag(a17a2a s 7aN)7
a; = €%, 0<¢; <2 (2.1)
Since the randomly taken eigenphases are generated ac-
cording to the Poisson process, we call the above ensem-
ble circular poisson (CPE). For large N, the level spacing
statistics P(s) conform to the exponential distribution,
typical to quantum analogues of generic classically regu-
lar systems.

The construction of matrices representing circular uni-
tary ensemble based on the Hurwitz parametrization [16]
was presented in the previous paper. Here we recapitu-
late the procedure briefly. An arbitrary unitary trans-
formation U can be composed from elementary unitary
transformations in two-dimensional subspaces. The ma-
trix of such an elementary unitary transformation will be
denoted by E(®9)(¢,1,x). The only nonzero elements of
EG:d) are

ESD =1, k=1,...,N; k#i,j
E;? = cos(¢)e™,

B — sin(@)e,

Eg’j) = —sin(¢p)e X,

E](-j-’j) = cos(¢p)e Y.

(2.2)

From the above elementary unitary transformations, one
constructs the following N — 1 composite rotations:

E; = EM? (13,912, X12),
E; = E(z’s)(¢23, P23, O)E(l's)('f’ls, Y13, X13),
Es = EGY (¢34,934,0)E®*) (24,124, 0)

xEM (¢14, %14, X14), (2.3)

En_y=EWN"2M(¢n_1 n,¥N_1,n,0)
XE(N—Z,N) (¢N—2,Na 1/}N—2,N1 0)
Xovee E(I,N) (¢1N7 1/)1N7 XlN)7

and finally forms the unitary transformation U as

U=e“EEEs---En_1. (2.4)

If the angles a, ¢rs, Y¥rs, and X1, are taken uniformly from
the intervals

0< s <2m, 0<x1,<2m, 0<a<2m, (25)
whereas
¢rs = arcsin(€}/?"), r=1,2,...,N —1, (2.6)
with &,, uniformly distributed in
0<&,<1, (2.7)

then the obtained matrix is drawn from the CUE [1].

B. Poisson-unitary transitions

In order to imitate a one-parameter transition between
the integrable and nonintegrable case, i.e., between di-
agonal matrices with uniformly and independently dis-
tributed elements [cf. Eq. (2.1)] and matrices from CUE,
we propose the following construction. Instead of allow-
ing the parameters 9,5, X1s, @, and &,, to take their val-
ues from the intervals given by formulas (2.5) and (2.7),
we restrict them to

0 < ps <2md, 0 < x1, < 276,

(2.8)

0<a<2md, 0<&,<4,
keeping the rule (2.6) for generating ¢,,. The parameter
4 controlling the transition takes values between zero and
one. The constructed matrix, denoted in the following by
Up(d), reduces to the unit matrix for § = 0 and becomes
a CUE matrix for 6 = 1, when formula (2.8) reduces to
(2.5) and (2.7). It is thus obvious that the one-parameter
family of matrices

U(3) = DU(8), (2.9)
interpolates between diagonal and circular unitary en-
sembles, since an additional multiplication of a CUE ma-
trix Up(1) by a random diagonal one D does not change
its statistical properties.

In order to achieve reliable statistics, we have con-
structed numerically 500 matrices of the size N = 100
with various values of the transition parameter 8, diag-
onalized them, and analyzed the properties of obtained
eigenvalues and eigenvectors. To study the long range
correlations of the spectrum, we computed the average
number of levels (Ng(L)) in an interval of the length L,
and the number variance £2(L) = (N2(L)) — (Ns(L))?.
For an uncorrelated spectrum of Poisson ensemble, the
number variance grows linearly with L, whereas correla-
tion characteristic to unitary ensemble manifest itself in
logarithmic growth of £2 [3,17]

$2(L) = %(m(zn) +147), (2.10)
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where v = 0.577... is the Euler constant.

Figure 1 shows the dependence of the number variance
¥2(L) for § = 0.0 (CPE), 0.05,0.1,0.3,0.5,0.7,0.9, and
1.0 (CUE). In spite of the fact that several interpolating
formulas for number variance are known in the literature
[14,18], none of them seems to be applicable to the en-
semble discussed. Note the smooth change of the spectral
properties from Poisson to CUE with the increase of the
control parameter §. It is worthwhile to stress that for
no values of & does the number variance coincide with

the COE behavior [3]

2
¥ (L) = % (m(an) +14y-— %) , (2.11)
represented by the dotted line. In other words, the en-
semble interpolating between Poisson and unitary en-
sembles does not visit the orthogonal ensemble, and the
CPE-COE transition has to be treated separately.
Figure 2 presents level spacing distribution P(s) for
three chosen intermediate values of 6. The dashed line
stands for the Poisson exponential distribution, which
describes the data for § = 0. The solid line represents
the Wigner surmise for unitary ensemble

2

Py(s) = fr—zsz exp [——4%] , (2.12)
which gives a good approximation to the CUE distribu-
tion for large N [3]. As seen in Fig. 2, the transition
CPE-CUE is almost completed for § = 0.9. Level spac-
ing distribution for this transition can be approximated
by an empirical formula proposed by Izrailev [19].

Complementary information concerning the transition
between canonical ensembles can be obtained by study-
ing the properties of eigenvectors. It is known [20-22]
that in the limit of large IV, the statistics of eigenvectors
components y = |cx|? for canonical ensembles is given
by the x2 distribution

where the number of degrees of freedom v equals one for
the orthogonal and two for the unitary ensemble. Since
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FIG. 1. Number variance $?(L) for CPE-CUE transition:
5 = 0.0 (), 0.05 (e), 0.1 (M), 0.3 (A), 0.5 (0), 0.7 (o), 0.9
(d), and 1.0 (A). Dashed, dotted, and solid lines represent
behavior of Poisson, orthogonal, and unitary ensembles, re-
spectively.
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FIG. 2. Nearest neighbors distribution P(s) for CPE
(dashed line)-CUE (solid line) transition. Values of the pa-
rameter § label each graph.

the distribution is peaked around zero, it is convenient
to use a logarithmic scale and study P(log(y)). Fig-
ure 3 shows the eigenvector distribution with the mean
value (y) normalized to unity for N = 100 and the same
three values of the parameter § visualizing the transition
CPE-CUE. For a small value of the parameter § > 0,
the eigenvector statistics can be approximated by an ap-
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FIG. 3. Eigenvector statistics P(log,o(y)) for the

CPE-CUE transition for three intermediate values of the pa-
rameter 8. Solid line stands for x2_, distribution.
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propriately normalized distribution Pp(y) = 1/y, which
corresponds to a broad and flat distribution in the log-
arithmic scale. For larger values of 4, the width of the
distribution P(log(y)) gradually shrinks and the eigen-
vector statistics tends to the expected x2 distribution.

C. Poisson-orthogonal transitions

A similar construction can be done to model a transi-
tion between Poisson and circular orthogonal ensembles.
To this end, let us remind our method of generating ran-
dom unitary symmetric matrices representative to the
circular orthogonal ensemble. In [1], we showed that it is
enough to construct a random unitary matrix according
to the prescription contained in the formulas (2.2)—(2.7)
and take

S =UTy, (2.14)
with UT denoting the transpose of U.

The generalization of the above construction consists
thus of taking the previously described unitary matrix
U(d) given in (2.9) and defining

5(8) = [U(8)TU(5) (2.15)
as a one-parameter family interpolating between diago-
nal (D2,§ = 0) Poisson and circular orthogonal [§ =
S§(1),6 = 1] ensembles.

Numerical construction of a COE unitary matrix is
only slightly more time consuming than a CUE matrix
of the same size. As in the previous case, our statistics
consist of data obtained from 500 matrices of the size
N = 100 with various values of the parameter § control-
ling the CPE-COE transition. Figure 4 shows the depen-
dence of the number variance $?(L) for § = 0.0 (CPE),
0.05,0.1,0.3,0.5,0.7,0.9, and 1.0 (COE). The limiting
case may be approximated (for L > 1) by (2.11) repre-
sented by the solid line. As in the previously considered
case, the transition occurs smoothly with variations of 4.

In an analogous way, we show in Figs. 5 and 6 the
distribution of levels and eigenvectors for the CPE-COE
transition. Observe that the changes of properties of
the spectrum parallel the changes of the properties of
the eigenvectors. Eigenvector statistics for this transi-
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FIG. 4. As in Fig. 1 for the transition Poisson orthogonal.
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FIG. 5. Nearest neighbors distribution P(s) for CPE
(dashed line)-COE (solid line) transition. Values of the pa-
rameter § label each graph.

tion can be approximated by the x2 distribution with a
real parameter v varying from zero to one, or by a more
sophisticated distribution introduced for band symmetric
matrices in Ref. [23].

Entire information on eigenvectors is included in the
distribution P(y). However, in order to describe the lo-
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FIG. 6. Eigenvector statistics P(log,q(y)) for the

CPE-COE transition for three intermediate values of the pa-
rameter §. Solid line stands for Porter-Thomas (x2-,) distri-
bution.



calization properties of eigenvectors by a single quantity,
it is convenient to define the Shannon entropy H; of the
eigenvector |¢;)

N
Hl = — Z Yik ln(yzk), (216)
k=1

and to use the ensemble average (Hg) := E{\;1 H;/N.
Mean entropy of eigenvectors averaged over Dyson en-
sembles of unitary matrices can be found analytically [24]
and expressed by means of the digamma function ¥(z)
[25]

<H,,)=\1;(g+1) —w(3+1), (2.17)
with v = 1 and 2 for COE and CUE, respectively.

When studying the transitions between canonical en-
sembles, one is interested in how the transition speed
changes with the dimension of the matrices N. Defining
the scaled entropy localization length as [26]

& = exp((Hs) — (H)),

which varies from zero to unity, we may compare the
properties of eigenvectors for the ensembles of different
sizes. Figure 7 shows the dependence of the scaled local-
ization length &; on the matrix size IV for five values of the
parameter § controlling the CPE-COE transition. For
each value of §, the numerical data are distributed along
horizontal lines, roughly at 3 =~ §. This provides a direct
argument that transition speed depends only weakly on
N. In order to investigate a transition in the properties
of eigenvalues, we computed the number variance £2(1)
for several values of transition parameter § and observed
its weak dependence on the size of matrices N. A similar
result showing a weak dependence of the transition speed
were also obtained for the Poisson-unitary transition.

(2.18)

III. TRANSITIONS BETWEEN DIFFERENT
SYMMETRY CLASSES

As already mentioned, of special interest are situa-
tions in which a nonintegrable system, which is originally
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FIG. 7. Dependence of the entropy localization length &;
of the eigenvectors of N X N matrices for the CPE-COE tran-
sition with § = 0.1 (A), 0.3 (0),0.5 (), 0.7 (o), and 0.9 (e).
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time-reversal invariant, is influenced by a perturbation,
which is itself time-reversal breaking. For time-periodic
systems, we encounter thus a transition between circu-
lar orthogonal and circular unitary ensemble. General-
izing our previous constructions of appropriate unitary
and unitary symmetric matrices by introducing the one-
parameter interpolating families, we consider

V() = UL (1 - 6)Us(1), (3.1)

with Up(1 — 6) the previously described unitary matrix.
Changing § from zero when V = UF(1)Up(1) = V7T to
one when V' becomes simply Up(1) we simulate a transi-
tion between COE and CUE.

In contrast to the other discussed transitions (CPE-
CUE and CPE-COE), the transition does not occur in a
uniform way with respect to the changes of the control
parameter 6. The critical value of the parameter § suf-
ficient to complete the transition to CUE decreases with
the matrix size.

In order to look for a scaling parameter A = A(N, ),
which governs the transition, we studied the log variance
o of the eigenvector distribution P(y). This quantity
o, = (In*(y)) — (In(y))? is equal to 72/2 ~ 4.935 for
COE and decreases to w2 /6 ~ 1.645 for CUE [13] and can
be used as a signature of the transition. We define the
critical value the control parameter §. by a condition that
the log variance is equal to an arbitrarily set intermediate
value of 2.0

Figure 8 presents the dependence of the critical param-
eter 6. on the matrix size N represented in the log-log
scale. All numerical data are localized close to a line
with the slope —1.48. This observation suggests that we
assume an existence of scaling and introduce a scaled
parameter \ := §N3/2,

To verify the above scaling hypothesis, we computed
eigenvector statistics for several values of A and four dif-
ferent sizes of matrices. The distribution P(y) has been
characterized by the log variance o02n and the entropy
localization length &; scaled with respect to CUE as
€2 = exp((Hs) — (Hz)), which varies from 2/e (COE)
to unity (CUE), according to Eq. (2.17).

The dependence of both quantities on A is shown in
Fig. 9. The data obtained for N varying from 30 to 240

3¢
In(é.)
4
5t

-6 -

-7

-8

30 35 40 45 50 55 60
In(N)

FIG. 8. Critical perturbation strength . vs matrix size N
in a log-log scale for COE-CUE transition. Linear fit gives
the slope —1.48.
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FIG. 9. Scaling of properties of eigenvectors for COE-CUE
transition. (a) Log variance of,, and (b) localization length
&2 plotted as functions of scaling parameter A = §N3/2 for
N = 30 (0),60 (0),120 (O), and 240 (A). Horizontal lines
represent the values typical of COE (w?/2) and of CUE
(w?/6).

form a single line in each case, which confirms the con-
jecture that the transition speed of eigenvectors changes
as N73/2, The scaled parameter \ varies per definition
from zero to N3/2, but the transition may be considered
as completed for A & 20. Log variance o, is sensitive to
small changes of A close to zero while &, deviates from
the COE value for A ~ 0.3.

In order to give an independent argument supporting
the found N~3/2 scaling, we would like to present the
following reasoning. The time-reversal symmetry is ef-
fectively broken when, due to changes of the parameter
é, the average shift of the eigenvalues is comparable to
the mean spacing As = 27 /N [5]. The average shift A¢

can be estimated as
A¢ = do, (3.2)

where o? is the the mean-square velocity

(3.3)

The characteristic value of the perturbation parameter
6. at which the transition effectively takes place can be
thus written as

(3.4)

We calculated numerically the dependence of the
mean-square velocity o2 on the size of the matrix N. The
results presented in Fig. 10 show clearly that 02 ~ N.
Therefore, we obtain

2.0 ° !
1. 1.5

20 25 30 35 40 45
In(N)

FIG. 10. The mean-squared velocity of levels o® :=
((d¢/dé)?|s=0) vs the matrix dimension N for the
COE-CUE transition. The fitted straightline corresponds to
In(0?) = 1.05 + 1.02In(N).

be ~ N73/2, (3.5)

The presented model of the COE-CUE transition is ob-
viously only a single representative of an infinite number
of possible ones. In our investigations we were motivated
by its simplicity.

The scaling parameter A governs also the statistical
properties of the spectrum. To show that, we plotted in
Fig. 11 the number variance ¥2(L) obtained for N = 30
(samples of 2000 matrices) and N = 50 (samples of 1000
matrices) for four values of the scaled transition parame-
ter A. We have checked that for any value of A the num-
ber variance £2(1) does not change much with N varying
from 30 to 250. For A = 10.0, the spectral properties of
the ensemble are close to the behavior characteristic of
CUE.

It might also be instructive to compare directly the
changes of the properties of eigenvalues and eigenvectors
during the transition COE-CUE. As shown in Figs. 12
and 13 (note the change of the horizontal scale with re-
spect to Figs. 3 and 6) representing the level spacing
distribution P(s) and the eigenvector statistics P(y) for

0.2

0.0
0

FIG. 11. Number variance $?(L) for COE-CUE transition:
for N = 30 (open, larger symbols) and N = 50 (full, smaller
symbols), and A = 0.3 (0),2.0 (0),5.0 (O), and 10.0 (D).
Dotted and solid lines represent the behavior of orthogonal
and unitary ensembles, respectively.
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FIG. 12. Nearest neighbors distribution P(s) for COE
(dashed line)-CUE (solid line) transition for 2000 matrices
of size N = 20. Values of the scaling parameter A label each
graph.

the same values of A, the transition occurs in a paral-
lel way. Level spacing distribution P(s) for COE-CUE
transition can be approximated by the Lenz-Haake dis-
tribution derived for 2 x 2 Hermitian matrices [10]. The
simplest interpolating formula for eigenvector statistics
P(y) is given by x2 distribution with real parameter v
varying from one to two. Better approximation was pro-
posed in [27], while the exact formula for P(y) during
the corresponding transition in the space of Hermitian
matrices was found by Sommers and Iida [28]

IV. CONCLUDING REMARKS

Practical algorithms allowing one to construct numer-
ically unitary matrices typical to circular unitary and or-
thogonal ensembles were presented in our previous paper
[1]. In this work, we extended our model by introducing
three one-parameter generalizations describing the tran-
sitions CPE-CUE, CPE-COE, and COE-CUE.

Transitions from regular to chaotic motion for time-
periodic dynamical systems can be described by transi-
tions from Poisson to orthogonal or unitary circular en-
semble, depending on the symmetry of the system. In-
troduced interpolating ensembles of random unitary ma-
trices change their properties in a smooth way with the
control parameter. Moreover, in both cases the transi-
tion speed depends only weakly on the size of the ma-
trix. These pleasant features of the defined ensembles

0.8 "
\é 2=0.89
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0.2+ !
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..... rozo ]
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Pllog;(y)]
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FIG. 13. statistics P(log(y)) for the

Eigenvector
COE-CUE transition obtained for N = 20 matrices with three
different values of the parameter . Solid line stands for x2_,
and dashed line for x2_, distributions.

allow us to hope that they might be successfully applied
to mimic properties of periodic time-dependent dynami-
cal systems or open scattering systems, described by an
S matrix, in place of often used Gaussian ensembles of
Hermitian matrices.

Time-reversal symmetry breaking in periodic dynami-
cal systems corresponds to the transition between orthog-
onal to unitary circular ensembles. We have defined one
of the possible ensembles realizing the transition COE-
CUE and showed that the transition speed for both eigen-
values and eigenvectors scales as N~3/2. This is in con-
trast to the analogous transition induced by a gradual
breaking of the time-reversal symmetry in a dynamical
model of periodically kicked top [13], for which properties
of the spectrum change faster than properties of eigen-
vectors.
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